Search Results for: Research

History

Vitamin K was discovered in 1929. The Danish scientist Henrik Dam and colleagues were investigating the role of dietary cholesterol by feeding chickens a diet without fat. After several weeks the animals started to suffer from frequent bleedings.4 This could not be stopped by adding cholesterol to the diet, so Dam postulated that – together … Continue reading History

Vitamin K was discovered in 1929. The Danish scientist Henrik Dam and colleagues were investigating the role of dietary cholesterol by feeding chickens a diet without fat. After several weeks the animals started to suffer from frequent bleedings.4 This could not be stopped by adding cholesterol to the diet, so Dam postulated that – together with fat – there had to be another compound in the diet that prevented the bleedings. After years of research he found a factor in hempseed that prevented bleeding, and decided to call it the coagulation vitamin. It was designated in German as “Koagulations” vitamin and that is how the new vitamin got the letter K.

This monumental discovery of Vitamin K earned Professors Henrik Dam and Edward Doisy the Nobel Prize in 1943.

1975

Esmon et al. published the mechanism of action of vitamin K and identified the vitamin K cycle as vital for the activity of carboxylase enzyme.

1989

Vermeer et al. published that vitamin K deficiency influences the ratio of serum uncarboxylated to carboxylated osteocalcin.  

1997

Sokoll et al. published that the US dietary vitamin K intake is not sufficient to fully carboxylate osteocalcin.

2001

Schurgers et al. published that inhibition of vitamin K-dependent carboxylation of MGP promotes vascular calcification.

2006

Tsugawa et al. published that MK-7 is the vitamin K form found in serum of women with reduced risk of bone fractures. Later that year Ikeda et al. published that intake of MK-7 is associated with reduced bone loss in post menopausal women in a population-based study (JPOS study).

2007

Schurgers et al. used rats to demonstrate that that arterial calcification and the resulting decreased arterial distensibility are reversible by high intake of vitamin K.

2008

Nimptsch et al. published a large population-based study showing that consuming dairy products containing higher menaquinones like MK-7 reduces the risk of prostate cancer substantially. No such reduction was observed with vitamin K1-containing food. Later, van Summeren et al. showed that a better vitamin K status was associated with more pronounced increase in bone mass in healthy children.

2009

Beulens et al. found among 564 post-menopausal women that intake of Vitamin K2 – but not vitamin K1 – was associated with reduced coronary calcification, and that adequate Vitamin K2 intake could be important for prevention of cardiovascular disease. Shortly thereafter van Summeren et al. demonstrated that modest MK-7 supplementation increases circulating concentrations of MK-7 and increases osteocalcin carboxylation in healthy children, while Gast et al. found that a high menaquinone intake reduces the incidence of coronary heart disease.

2012

Westenfeld et al. confirmed that most hemodialysis patients have a functional vitamin K deficiency. More importantly, they found that inactive MGP levels can be decreased markedly by daily Vitamin K(2) supplementation.

2013

Knapen et al. showed that after three years of supplementation of 180 mcg Vitamin K2 as MK-7 (MenaQ7®) daily, improvements in both bone mineral content and bone mineral density were statistically significant in the MenaQ7® group. Moreover, bone strength was statistically improved. Later that year Theuwissen et al. established the vitamin K status across age groups based on circulating levels of ucOC and dp-ucMGP, i.e. markers for the vitamin K status of bone and the vasculature, respectively. Accordingly, the study classified healthy children and adults above 40 years as groups with prominent vitamin K deficiency and thus appropriate groups for vitamin K supplementation.

2015

Knapen et al. published the first double-blind, randomized, intervention trial where the results confirm that Vitamin K2 intake is linked to cardiovascular risk. Researchers found that, after three years of daily supplementation with 180 mcg Vitamin K2 as MK-7 (as MenaQ7®),  it not only inhibited age-related stiffening of the artery walls, but also made a statistically significant improvement of vascular elasticity, especially in women having high arterial stiffness. To date, the effects of increased menaquinone intake on markers of vascular health have been investigated using predominantly food supplements. Therefore, Knapen et al. sought to study the effects of a menaquinone-fortified yogurt drink (as MenaQ7®) on vitamin K status and markers of vascular health in healthy men and postmenopausal women. Results showed MK-7 was efficiently absorbed from the fortified yogurt drink, improving vitamin K status, which contributed to improved cardiovascular health.

Contact Us

- Shaping The Future Of Vitamin K2 NattoPharma is now part of the Gnosis by Lesaffre family. This new union of Vitamin K2 pioneers provides the industry the most comprehensive K2 portfolio, backed by science and produced to the highest quality standards. NattoPharma is the world leader of Vitamin K2 research and development, sponsoring all … Continue reading Contact Us

natto– Shaping The Future Of Vitamin K2

NattoPharma is now part of the Gnosis by Lesaffre family. This new union of Vitamin K2 pioneers provides the industry the most comprehensive K2 portfolio, backed by science and produced to the highest quality standards.

NattoPharma is the world leader of Vitamin K2 research and development, sponsoring all clinical research illuminating the important bone and cardiovascular health benefits of Vitamin K2 as MK-7 for all ages. Gnosis by Lesaffre has pioneered the development of Vitamin K2 as MK-7 from fermentation, with its first production launched almost 20 years ago.

Now there is a comprehensive, one-stop-shop for all things Vitamin K2.

To learn more about the NattoPharma team and/or to subscribe to the newsletter, visit www.gnosisbylesaffre.com/newsletter-sign-up/

NattoPharma AS
(Head Office)

Mustads Vei 1
0283, Oslo

(+47) 40 00 90 08

NattoPharma USA, Inc.
(North American Subsidiary)

5 Joanna Ct., Suite A
East Brunswick, NJ 08816

(+1) 609-454-2992

What are K vitamins?

The two most important forms found in food are vitamin K1 (phylloquinone) and Vitamin K2 (menaquinone). K vitamins are a group of fat-soluble vitamins. The two most important forms found in food are vitamin K1 (phylloquinone) and Vitamin K2 (menaquinone). Vitamin K1 is known for its role in blood coagulation (clotting). Vitamin K2 also contributes … Continue reading What are K vitamins?

The two most important forms found in food are vitamin K1 (phylloquinone) and Vitamin K2 (menaquinone).

K vitamins are a group of fat-soluble vitamins. The two most important forms found in food are vitamin K1 (phylloquinone) and Vitamin K2 (menaquinone). Vitamin K1 is known for its role in blood coagulation (clotting). Vitamin K2 also contributes to coagulation, but more importantly, it is a form newly recognized for its essential role in building and maintaining strong bones, as well as inhibiting calcium deposits in the arteries and blood vessels.

Supplemental Vitamin K2 exists in several forms, but the most common ones are the synthetic menaquinone-4 (MK-4) and the natural and nature-identical synthetic menaquinone-7 (MK-7).

MK-7 is the superior form of vitamin K

All K vitamins are similar in structure, but differ in the length of the “side chain” – the longer the side chain, the better effect and efficiency. Consequently, the long-chain menaquinones (especially MK-7) are the most desirable as they are nearly completely absorbed (body requires smaller doses) and stay in the blood for the longest time. This makes Vitamin K2 also available for tissues outside the liver, namely bones, arteries, and soft tissues.

In fact, studies consistently show that Vitamin K2 as MK-7 is much more effective compared to MK-4. This is mainly due to MK-7’s significantly greater:

  • Absorption & Half-Life Time
  • Accumulation in the Serum
  • Efficacy

Absorption & Half-Life Time

Both Vitamin K2 as MK-4 and MK-7 are nearly completely absorbed, with peak serum concentration at 2 hours for MK-4 and 4 hours for MK-7 after intake. However, MK-4 quickly disappears from the circulation, whereas MK-7 is capable of accumulating in the bloodstream (remaining in the body for approximately 72 hours). Therefore, supplementation with MK-7 only needs to be taken once a day and is a more convenient option.1

Accumulation in the Serum

The long half-life of MK-7 results in significantly better accumulation compared to MK-4. Research shows that  MK-7 has  better absorption. Hence, smaller quantities and less frequent intakes of MK-7 are sufficient to supply all of the tissues.2

Efficacy

45mcg/daily of MK-7 is proven to be sufficient in order to increase the carboxylation process and the activation of vitamin K-dependent proteins such as Osteocalcin for bone health and Matrix Gla Protein (MGP) for heart health.3

We value your privacy

We access information on a device, such as cookies and process personal data, such as unique identifiers and standard information sent by a device for personalised ads and content, ad and content measurement, and audience insights, as well as to develop and improve products.

With your permission we and our partners may use precise geolocation data and identification through device scanning. You may click to consent to our and our partners’ processing as described above. Alternatively you may click to refuse to consent or access more detailed information and change your preferences before consenting.

Please note that some processing of your personal data may not require your consent, but you have a right to object to such processing. Your preferences will apply to this website only. You can change your preferences at any time by returning to this site or visit our privacy policy.